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High-speed helicopter rotor impulsive noise prediction is an important problem
of aeroacoustics. The deterministic quadrupoles have been shown to contribute
significantly to high-speed impulsive (HSI) noise of rotors, particularly when the
phenomenon of delocalization occurs. At high rotor-tip speeds, some of the
quadrupole sources lie outside the sonic circle and move at supersonic speed.
Brentner has given a formulation suitable for efficient prediction of quadrupole
noise inside the sonic circle. In this paper, a simple formulation is presented based
on the acoustic analogy that is valid for both subsonic and supersonic quadrupole
noise prediction. Like the formulation of Brentner, the model is exact for an
observer in the far field and in the rotor plane, and is approximate elsewhere. The
full analytic derivation of this formulation is given in this paper. The method of
implementation on a computer for supersonic quadrupoles using marching cubes
for constructing the influence surface (S-surface) of an observer space–time
variable (x, t) is presented. Then, several examples of noise prediction are given
for both subsonic and supersonic quadrupoles. It is shown that in the case of
transonic flow over rotor blades, the inclusion of the supersonic quadrupoles
improves the prediction of the acoustic pressure signature. The equivalence is
shown of the new formulation to that of Brentner for subsonic quadrupoles. It
is shown that the regions of high quadrupole source strength are primarily
produced by the shock surface and the flow over the leading edge of the rotor.
The primary role of the supersonic quadrupoles is to increase the width of a strong
acoustic signal.
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1. INTRODUCTION

High-speed flight of helicopters has been an illusive goal because of the rapid
increase in rotor noise and vibration. Noise and vibration increase dramatically
because of the increasing disparity between the fluid velocity over the advancing
and the retreating rotor blades. When the supersonic flow region on the advancing
rotor blade extends off the blade into the far field (a phenomenon known as
delocalization [1]), high-speed impulsive (HSI) noise becomes dominant over all
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the other rotor noise sources. For this reason, the efficient prediction of the HSI
noise of helicopter rotors is currently an important problem of aeroacoustics. The
cause of this noise has been identified since the late 1970s [1, 2] as the deterministic
quadrupoles in the vicinity of the rotor, and, in the case of delocalization, beyond
the sonic circle and the blade tip. Many schemes have been proposed by
researchers based on the acoustic analogy [1–9] and the Kirchhoff method [10, 11].
At present, most of these schemes are limited to subsonic quadrupole source
motion, however, very recently several methods have been proposed for the
prediction of noise from supersonic sonic sources [12–15]. In the case of subsonic
quadrupole noise prediction, a method based on a formulation by Brentner,
formulation Q1A, exists [7] which is exact for an in-plane, far-field observer but
is approximate elsewhere. This method has been implemented in the code
WOPWOP+ [6, 7] and has been shown to be highly efficient and robust. There
is a need for an efficient and robust method of prediction of the supersonic
quadrupole noise. We present a new formulation—based on the same model used
by Brentner—that is valid for both subsonic and supersonic quadrupole noise
prediction.

The derivation of a supersonic quadrupole formulation, which we call
formulation Q2, is the main result of this paper. Section 2 starts with an exact
solution of the wave equation for quadrupole sources of the Ffowcs
Williams–Hawkings (FW–H) equation given by Farassat and Brentner [16]. In this
solution, volume integrals involving the quadrupole sources are only differentiated
with respect to observer time. These volume integrals are written in terms of a
surface integral over the collapsing sphere and a source time integral. For an
observer in the rotor plane and in the far field, the collapsing sphere is
approximated as a right circular cylinder normal to the rotor disc and the
quadrupole source strength is integrated along lines normal to the rotor disc and
treated as sources on the rotor disc. Then it is hypothesized that the quadrupole
noise everywhere can be predicted using these surface sources. This hypothesis has
been validated by Brentner and Holland [6]. The idea of approximating the volume
(quadrupole) sources with equivalent surface sources was originally proposed and
numerically implemented by Yu et al. [1] for the far-field solution of the FW–H
equation. Later this idea was also implemented by Schultz and Splettstoesser [3],
Brentner and Holland [6], and Brentner [7]. Our main contribution has been to
use this idea in obtaining closed-form solutions of the same equation, formulations
Q1A and Q2, which seem to result in more efficient prediction of HSI noise. The
new formulation (Q2) presented here is very simple and unlike formulation Q1A
is valid for both subsonic and supersonic quadrupoles. Hence, quadrupole noise
predictions from both formulations can be directly compared in the subsonic case.

Section 3 discusses how formulation Q2 is implemented in a new testbed code
called WOPWOP2+. The quadrupole sources beyond the sonic circle can have
multiple emission times and the usual solution of the wave equation for subsonic
surface sources (e.g., formulations 1, 1A, and Q1A) will have a singularity known
as the Doppler singularity. To avoid this Doppler singularity, it is necessary to
use a S-surface formulation [17, 18]. The method of construction of the S-surface
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used in WOPWOP2+ is known as marching cubes [19]—an algorithm originally
developed for computer graphics [20].

Some examples of HSI noise prediction for a hovering rotor is presented in
section 4. First, a comparison of the results of noise prediction is presented for
subsonic quadrupoles based on formulations Q1A and Q2. It is shown that the
results agree well with each other. A study of the surface source strength (i.e., the
integral of quadrupole source strength along the line normal to the rotor disc)
shows that the primary contributions to the quadrupole noise come from the shock
surfaces on and beyond the blade and the flow over the leading edge of the blade.
It is also shown that the inclusion of the quadrupole sources beyond the sonic
circle improves the prediction of the width of the main pulse and the shape of the
acoustic pressure signature and agreement with experimental data. Finally, the
robustness of the formulation is demonstrated by performing predictions for
out-of-plane and near-field observers. Concluding remarks follow in section 5.

2. FORMULATION AND SOLUTION OF THE PROBLEM

We begin with the solution of the following wave equation for quadrupole noise
radiation from the Ffowcs Williams–Hawkings equation:

q2p'Q (x, t)=
1�2

1xi 1xj
[TijH( f )], (1)

where the bar over the partial derivative operator indicates generalized
differentiation, Tij is the Lighthill stress tensor, H( f ) is the Heaviside function,
and f=0 describes the blade surface ( fq 0) outside the blade). The solution for
this equation was given by Farassat and Brentner [16] as

4pp'Q (x, t)=
1
c

12

1t2 g
t

−a gfq 0

Trr

r
dV dt

+
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1t g
t

−a gfq 0

3Trr −Tii

r2 dV dt

+ c g
t

−a gfq 0

3Trr −Tii

r3 dV dt, (2)

where the quantity Trr is the double contraction Tijr̂i r̂j , and r̂i are the components
of the unit vector in the radiation direction. In addition, dV is an element of the
collapsing sphere surface g=0. It is now assumed that the observer is in the far
field and on the rotor plane. The part of the collapsing sphere intersecting the
source region near the rotor blade can be approximated by a right circular cylinder
normal to the rotor plane. This is shown in Figure 1.

Let us assume that the rotor is nominally in the y1y2-plane and y3 is, therefore,
perpendicular to this plane (i.e., the rotor tip-path plane). We integrate the inner
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integrals of equation (2) with respect to y3 over the approximate collapsing sphere
surface. Define

Qij (y1, y2, t)=g
a

−a

Tij dy3 (3)

and use the relation

dS= c dt dG, (4)

where dG is the length of an element of the curve defined by the intersection of
the collapsing sphere with the rotor disc. Equation (2) can now be written as

4pp'Q (x, t)=
1
c2

12

1t2 g 1
r

[Qrr ]ret dS

+
1
c

1

1t g 1
r2 [3Qrr −Qii ]ret dS

+g 1
r3 [3Qrr −Qii ]ret dS, (5)

where the subscript ret indicates the integrand is evaluated at the retarded time.
The integrals in equation (5) are all over the entire y1y2-plane. This fact allows one
to bring the observer-time derivatives inside the integrals without worrying about
the limits of integration.

The next step is the most crucial in the derivation of the final result. Note that
1/1t= 1/1t=x meaning x in the frame fixed to the undisturbed medium is kept fixed
in this differentiation. Also note that the tensor Q with components Qij is defined

Figure 1. The actual and approximate collapsing sphere surfaces in the vicinity of the rotor blade.
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in the x frame of reference, hence, all velocity terms in Qij (x, t) are specified with
respect to the frame fixed to the undisturbed medium. However, if one uses a
change of co-ordinates (x, t):(h, t), where the h frame is aligned with the rotor
blade (i.e., by co-ordinate rotation and translation), one has

1[Qij ]ret
1t bx =$ 1

1t bx Qij%ret

=$1Qij

1t bh −V · 9hQij%ret

0 [LtQij ]ret , (6)

where h is the position vector in the rotating frame and t is the source time. Here
V= 1h/1t is the velocity of the point h specified in the frame fixed to the
undisturbed medium. Note that V is in the rotor plane. It is important to recognize
that when we refer to Qij =h we really mean that the components of the tensor Qij

represented in co-ordinates that are instantaneously aligned with the rotating
frame. Thus, equation (6) provides the time derivative of Qij =x in the stationary
frame in terms of Qij =h which is specified in the co-ordinates of the moving frame.
Using this operator notation in equation (5), one gets

4pp'Q (x, t)=
1
c2 g 1

r
r̂i r̂j [L2

tQij ]ret dS

+
1
c g 1

r2 [3r̂i r̂jLtQij −LtQii ]ret dS

+g 1
r3 [3Qrr −Qii ]ret dS. (7)

Notice that the operator Lt operates on Qij only because r̂i and r̂j do not depend
upon t or t. To write this equation in final form, express V(h, t) as

V=VF +v× h, (8)

where VF is the forward velocity of the rotor, v is the angular velocity of the rotor,
and h is the position vector of the source Qij in the rotor plane with the origin
at the rotor center. It is assumed that both Vf and v are time independent and
note that v= =v=. From equation (8), one has

1V
1t bh =v×(v× h)

=−v2h. (9)
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Thus, one can express L2
t as

L2
t =0 1

1t bh −V · 910 1

1t bh −V · 91
=

12

1t2 bh −V · 9
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1t bh −
1
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All the gradients are with respect to h. One has

1
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where 1/1h is the directional derivative in the h (radial direction) and h= =h=. One
also has
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1

1h
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where 9' does not operate on V, i.e., one defines
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and V=(V1, V2). Therefore, L2
t can be written as

L2
t =

12

1t2 bh −2V · 9
1

1t bh +(V · 9')2

+ (v×VF ) · 9. (14)

When this expression is used in equation (7), one gets a singularity free expression
for supersonic quadrupole noise prediction. Note that equation (7) has second
space and time derivatives of Qij , as well as first space derivatives in the
h1h2—plane (the rotor plane). These quantities are available in the CFD
postprocessor that is used to compute Qij for acoustic calculations. Equation (7)
will be referred to as formulation Q2. As it stands, formulation Q2 is valid for
subsonic and supersonic quadrupole noise prediction for helicopter rotors in hover
or forward flight. Note that this equation is very simple and has no singularities.
It has been assumed that the shocks on the blades are smeared over one or more
grid cells and that Qij has continuous second derivatives over the rotor plane
(although the magnitude of the second derivative can be very high at the foot of
the shocks). These assumptions are generally satisfied in CFD calculations for
helicopter rotor aerodynamics.
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2.1.    

Now an order of magnitude study of the far-field term of our main result,
equation (7), will be carried out. Very useful conclusions can be drawn from such
a study as will be shown below. It is known that the peak of directivity of
quadrupole noise is in the rotor plane with the observer ahead of the helicopter.
Let us put the observer in such a location in the far field. Then in the frame fixed
to the undisturbed medium (where the x1-axis is the flight direction and the x3-axis
is normal to the rotor plane), the components of the unit radiation vector can be
approximated as r̂=(1, 0, 0). The major contribution to the far-field quadrupole
noise comes from Q11 which will be closely examined below.

The numerator of the integrand of the far-field term is

L2
tQ11 =

12Q11

1t2 bh −2V · 9
1Q11

1t bh +(V · 9')2Q11

+ (v×VF ) · 9Q11. (15)

The order of magnitude of each term in equation (15) can now be estimated as
follows. Let the advancing tip speed be denoted by VAT . Then, one can see that

12Q11

1t2 bh 0v2Q11, V · 9
1Q11

1t bh 0vVAT
1Q11

1h1
, (16a, b)

(V · 9')2Q11 0V 2
AT

12Q11

1h2
1

, (v×VF ) · 9Q11 0vVF
1Q11

1h1
. (16c, d)

In these equations, the derivative 1/1h1 is the directional derivative in the
chordwise direction. Note that for a hovering rotor 1Q11/1t, 12Q11/1t2, and VF are
all zero, therefore the only remaining component is (V · 9')2Q11. Since v, in
general, is small for helicopter rotors, one can see that the dominant term in
forward flight is also most likely the term (V · 9')2Q11. The right side of equation
(16c) can be further estimated as

V 2
AT

12Q11

1h2
1

0V 2
ATQ11

(Dh1)2 , (17)

where Dh1 is the chordwise scale over which significant change in Q11 occurs.
Significant changes in Q11 occur near both the leading edge stagnation point and
the base of the shock. Hence, it is suspected that the dominant sources of
quadrupole noise will be located at these locations (Dh1 0LE radius and
Dh1 0width of the projection of the shock surface in the rotor plane). These
conclusions are verified by the computation of L2

tQ11 for a hovering UH-1H model
rotor blade at tip Mach number 0·925, shown in Figure 2. It is apparent in the
figure that the primary source of HSI noise is the shock wave (as proposed by
Farassat and his colleagues—see references [16, 21–23]) and the flow over the
leading edge of the blade. The significance of the quadrupole source in the leading
edge region has not been widely recognized in previous work, however, it has been
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Figure 2. Contours of L2
tQ11 in the vicinity of a hovering UH-1H rotor, MH =0·925.

found here to be of comparable amplitude to the quadrupole source strength in
the shock region.

3. NUMERICAL IMPLEMENTATION

A new code, called WOPWOP2+, is used to demonstrate the utility of
formulation Q2. WOPWOP2+ differs significantly from WOPWOP+ [6, 7] in
that it uses a S-surface formulation to compute thickness and loading noise, as
well as the quadrupole noise. The construction of the S surface and subsequent
integration over the S surface is performed using the method of marching cubes
integration developed by Brentner [19]. The numerical calculation of quadrupole
noise has been divided into two stages: a preprocessing stage in which the
integration of the Lighthill stress tensor in the normal direction, indicated in
equation (3), is carried out, and an evaluation stage in which the quadrupole
contribution to the acoustic pressure specified in equation (7) is determined. Both
the preprocessor and the acoustic calculation are described briefly in this section.
More information on the preprocessor, which is the same preprocessor that is used
by WOPWOP+, can be found in reference [6].

3.1. 

Although the evaluation of Qij can be performed independently of observer
position and retarded time, the preprocessor must read in the CFD solution,
interpolate the solution at the necessary quadrature locations, and then perform
the numerical quadrature in the direction normal to the rotor disc. The
preprocessor needs knowledge of both the CFD grid topology and the solution
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format. In the implementation used for this work, the interpolation of the CFD
data is two-dimensional and is done one radial station at a time. For a given radial
station, data are interpolated to quadrature points needed for composite
Gauss–Legendre integration, on lines normal to the rotor plane. The lines are
uniformly distributed in the chordwise direction. A two-dimensional linear
least-squares interpolation is used to interpolate the density, momentum, and
energy at each quadrature point. The Lighthill stress tensor Tij is evaluated with
the interpolated data. The value of Qij on the rotor disc is determined at each
chordwise location before moving to the next radial station. The results are stored
for the acoustic calculation stage. The CFD data used for the noise prediction [24]
was given on a grid with rather coarse radial resolution beyond the blade tip. The
quadrupole source strength radial resolution off the blade tip was increased
five-fold by utilizing sixth order polynomial interpolation along radial grid lines
for both the location and strength of the quadrupole data. A typical grid generated
by the quadrupole preprocessor is shown in Figure 3.

3.2. 2+

The primary function of the WOPWOP2+ code is to perform the integration
indicated in equation (7) numerically. Although the integration is over the entire
rotor disc plane, in practice the source strength is zero over a large part of the
plane; hence, the quadrupole integration is only performed near the rotor blade
(see Figure 3). The main difficulty in the numerical evaluation of equation (7) is
the construction of the S-surface for the portion of the plane in which the source
strength is non-zero. The S-surface is the collection of points in space–time that
emit signals that reach the observer at one particular observer time. The
integration is complex because the pointwise mapping between the physical source
plane and the S-surface is not known explicitly. Special care must be taken in the
construction because in practice the S-surface may be composed of several disjoint

Figure 3. Typical quadrupole grid used for WOPWOP2+ calculations for hovering UH-1H rotor.
Note that only every 4th grid line is shown in the chordwise direction.
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Figure 4. Evolution of the S-surface geometry and integrand strength distribution r̂1 r̂1L2
tQ11/r a

function of observer time. The observer is located 3·09R from the rotor hub and the rotor tip velocity
is MH =0·95.

pieces when the source motion is supersonic—exactly the case we are interested
in. Figure 4 shows a typical evolution of the S-surface. Notice that in the first few
time steps each position on the S-surface is single valued (i.e., a point only occurs
at one azimuthal position), but later the leading edge and eventually the entire
outer portion of the surface becomes triple valued (i.e., point near the tip of the
grid may occur at three azimuthal positions).
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The marching cubes method begins constructing the S-surface by choosing the
source time and computing the corresponding observer time and integrand value
at each grid point. If the observer times are computed and stored for each desired
source time, the discrete computational data become a three-dimensional array;
two computational indices parameterize the surface spatially and a third index
accounts for the source time. In this three-dimensional computational space,
isosurfaces of observer time t are, by definition, distinct realizations of the
S-surface. The extension of the marching-cubes algorithm for surface integration
[19] determines how the surface intersects a logical cube in the three-dimensional
computational grid, computes the contribution to the integral from that portion
of the surface, and then moves (or marches) to the next cube. The topology of
the surface within a single cube can be determined uniquely by examining the
function value (observer time in this case) at each of the cube vertices and
comparing this value to the desired surface value. A table lookup is then used to
determine the exact topology of the surface in the current cube. The surface is
formed by a set of triangular panels that have vertices on the edges of the cubes.
The value of the surface integral over each triangle is approximated as the average
integrand value of the triangle vertices multiplied by the triangle area. Linear
interpolation is used to determine the integrand values at the triangle vertices
based on the previously computed value at the cube vertices. The marching cubes
algorithm is generic—the only difference in computing thickness, loading, or
quadrupole noise is the value of the integrand computed at each grid vertex. (For
more detail on the marching cubes algorithm, see references [19, 20].

The version of the marching-cubes algorithm used for the calculations in this
paper was adaptive—that is the integral value for a single cube was compared to
the value obtained using the eight subcubes obtained by bisecting each of the sides
of the original cube. If the difference between the integral values was greater than
a specified tolerance, each of the subcubes were also subdivided in a recursive
manner. Six levels of recursion were allowed in the computations for this paper.
When a cube was divided, the quadrupole source strength at the new vertices was
computed using linear interpolation, but the observer time and source location
were computed without approximation. Finally, the integrand values were
computed anew at each of the new vertex locations.

For simplicity, the current WOPWOP2+ code only implements formulation Q2
for a hovering rotor. For a hovering rotor, LtQij and L2

tQij can be written in the
form

LtQij =−(v× h) · 9hQij =−vh
1Qij

1h1
(18a)

and

L2
tQij =(v× h) · 9h((v× h) · 9hQij )=v2h2 12Qij

1h2
1
, (18b)

where 1/1h1 is the directional derivative in the azimuthal direction and h= =h=.
Equation (18) is implemented numerically in WOPWOP2+ with second-order
accurate central-difference operators.
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4. NUMERICAL RESULTS

In this section, first a comparison is made of the acoustic pressure signatures
of a hovering model rotor from WOPWOP+ and WOPWOP2+ which use
formulations Q1A and Q2, respectively. Then, the comparison of the predicted and
measured acoustic pressure signatures for the same hovering model rotor at four
different tip Mach numbers is presented. At the three highest tip Mach numbers,
the phenomenon of delocalization occurs and WOPWOP2+ must be used for HSI
noise prediction if the contribution of the supersonic quadrupoles is to be included
in the prediction. The remaining analysis examines the role of the supersonic
quadrupoles and the robustness of the formulation.

A model-scale rotor test conducted by Boxwell et al. in 1978 [25] and repeated
later by Purcell in 1988 [26] is used for comparison. The measured data was for
non-lifting hovering rotor generating HSI noise. The rotor was a 1/7th scale
UH-1H main rotor with straight untwisted blades and NACA 0012 airfoil section.
The rotor radius R was 1·045 m with a chord of 7·62 cm. The measured data
reported here are all from a microphone in the rotor plane and at 3·09R from the
rotor tip. The Euler solutions utilized as input in this numerical work were
provided by Baeder and are described in references [5, 24]. The Euler solutions are
also used for direct comparison with the acoustic prediction when experimental
data is unavailable.

4.1.   

Figure 5 shows a comparison of the predicted acoustic pressure signatures from
WOPWOP+ (formulation Q1A) and WOPWOP2+ (formulation Q2) at tip Mach
number 0·925. The thickness and loading, quadrupole, and total acoustic pressure
time histories predicted by each of the codes are also shown in this figure.
Although the supersonic quadrupoles are important in the prediction of the
acoustic pressure signature because delocalization occurs at this operating
condition, WOPWOP+ can only handle subsonic quadrupole sources; therefore,
only the subsonic quadrupole sources were used in both predictions for this
comparison. The marching cubes approach was utilized to construct the S surface
(influence surface) of the rotor blade and the quadrupole source surface in
WOPWOP2+. A good agreement in this comparison proves two points. First, it
will tell us that the construction of the S-surface is correct in WOPWOP2+.
Second, the two formulations Q1A and Q2 are equivalent. Both these points are
evident in Figure 5. This figure also shows that the individual components due to
thickness and loading and the quadrupole sources as well as the total acoustic
pressure signatures from the two codes agree well. Thus, some confidence has been
established in using WOPWOP2+ for prediction of HSI noise.

4.2.    

HSI noise calculations for tip Mach numbers 0·88, 0·9, 0·925 and 0·95 are
presented in Figure 6. The quadrupole grid extends 1·86R beyond the blade tip
for all the WOPWOP2+ calculations shown in Figure 6. For comparison, the
WOPWOP+ signature is also shown which includes quadrupole sources up to the
sonic circle. It is seen that the agreement of the WOPWOP2+ signature with the
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Figure 5. Comparison of WOPWOP+ prediction (W) with subsonic WOPWOP2+ prediction
(——) for a UH-1H hovering rotor, MH=0·925. Quadrupole grid extends 0·075R beyond rotor tip:
(a) thickness and loading components; (b) quadrupole component; (c) total acoustic pressure.
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Figure 6. Comparison of WOPWOP+ (——) and WOPWOP2+ (–––) predicted acoustic
pressure with experimental data [26] (q) for hovering model UH-1H rotor. Quadrupole grid in
WOPWOP+ prediction extended almost to sonic circle and in WOPWOP2+ predictions extended
1·86R beyond the rotor tip. (a) MH =0·88; (b) MH =0·90; (c) MH =0·925; (d) MH =0·95.

measured data is excellent and better than that of WOPWOP+ for each case.
Thus, the ability to predict the noise from supersonic quadrupoles in the case of
delocalized shocks and the resulting improvements in the overall shape and level
of the acoustic pressure have been demonstrated.

For the more intense cases (MH q 0·90), the agreement of the WOPWOP2+
prediction with the measured acoustic pressure signature is not fully satisfactory
because the WOPWOP2+ prediction overpredicts the negative peak pressure.
This is apparent in Figure 6 for the times between the WOPWOP+ and the
WOPWOP2+ shock locations. A closer examination of the S-surface and the
quadrupole integrand strength distribution for this time range, shown in Figure
7, reveals that this time range is precisely when the region of the strongest
quadrupole integrand strength is bifurcating (i.e., transitioning from subsonic to
supersonic). Notice in particular that the area of the highest and lowest values
(lightest and darkest, respectively) change dramatically during this time range.
Hence, relatively small errors in the peak values of L2

tQij can result in amplified
error. To reduce the sensitivity of the acoustic predictions to this type of error,
a seven-point, moving-window-average smoothing was utilized in the chordwise
direction of the quadrupole source strength. This smoothing only had a small effect
on the acoustic signal away from the shock, but was useful to reduce the error
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previously noted. Figure 8 is a representative comparison of the smoothed and
unsmoothed acoustic predictions. (Note smoothing was used in all of the
computations for this paper, except the MH =0·88 case, where the shock strength
did not seem to warrant smoothing.)

It is well known that the quadrupole accounts for the non-linear propagation
effects caused by the finite particle velocity and the variation of sound speed in
the physical problem. The calculations shown in Figure 6 seem to indicate that
the primary role of the supersonic quadrupoles is to increase the pulse width of
intense propagating waves. The width of the main pulse of the signatures predicted
by WOPWOP2+ agrees very well with the measured signature. Even for the
MH =0·88 case, which is not delocalized, the supersonic quadrupoles improve the
agreement by increasing the width and amplitude of the acoustic signal. For the
delocalized cases, the supersonic quadrupoles also decrease the slope, and thus
improve the agreement, of the triangular shape proceeding the rapid increase in
acoustic pressures. Figure 9 shows the effect of the extent of the quadrupole grid
for the particularly intense MH =0·95 case. Three separate computations were

Figure 7. Evolution of quadrupole integrand strength distribution r̂1 r̂1L2
tQ11/r on the emission

surface as a function of observer time for times near the peak negative acoustic pressure. Dark and
light shading indicates negative and positive values of r̂1 r̂1L2

tQ11/r respectively. Note the extremely
rapid change in the contours area as the source region bifurcates. (a) t=1·050 ms; (b) t=1·117 ms;
(c) t=1·183 ms; (d) t=1·250 ms.
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Figure 8. Comparison of WOPWOP2+ prediction with unsmoothed Qij input data (W) with the
prediction made using Qij smoothing (——). A seven-point moving-window average smoothing was
applied in the chordwise direction for a UH-1H hovering rotor, MH =0·925.

made with the quadrupole source grid extending beyond the rotor tip 0·05R, 0·33R
and 1·86R, respectively. The quadrupole grid is shown in Figure 9(a) with the three
grid extents indicated. The first WOPWOP2+ computation, 0·05R beyond the
rotor tip, is essentially identical to the WOPWOP+ calculation shown in Figure
6(d). Notice that the prediction for the largest grid extent, 1·86R beyond the rotor
tip, agrees very well with the data in both waveform width and shape. These
computations suggest two things: even though the quadrupole correctly predicts
the non-linear propagation (i.e., the widening and changing of the waveform
shape), it is probably an inefficient tool for predicting the non-linear propagation
because an accurate CFD computation must proceed the quadrupole prediction;
and it seems likely that the non-linear propagation could be determined more
appropriately by another method starting with the acoustic signal somewhat closer
to the rotor.

4.3.  

In this section we wish to demonstrate the robustness of the method by
performing predictions which violate some of the assumptions leading to
formulation Q2. First, the noise for an out-of-plane observer is predicted and the
acoustic pressure is compared with an Euler solution. Second, the noise for a very
near-field observer is predicted.

The acoustic pressure was predicted using WOPWOP+ and WOPWOP2+ at
two observer locations directly below an in-plane observer at 3·09R from the rotor
hub. These observers are 10 and 20° below the rotor plane, respectively. In Figure
10, these predictions are shown for the MH =0·9 case. No measured data are
available at these observer locations, therefore, the Euler solutions [5] used as input
have been interpolated. It is seen that the two sets of calculations agree fairly well
with each other, but the WOPWOP2+ result characterizes the waveform width
and asymmetry slightly better for the 10° down observer. Furthermore, as
expected, the peak negative value of the main pulse of the acoustic pressure reduces
with increasing observer angle. When the observer is 20° below the rotor plane,
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the agreement is good for both methods, but the quadrupole contribution is
relatively small. The chordwise smoothing of the quadrupole source strength in
the WOPWOP2+ computation is believed to be responsible for the lower
amplitude in the 10° down prediction; since the quadrupole contribution is small
in the 20° down case the effect of smoothing is not readily noticeable.

In a second comparison, shown in Figure 11, the acoustic pressure has been
predicted with WOPWOP2+ at an in-plane observer 1·094R from the rotor hub.
This observer is just inside the sonic circle and is less than two chordlengths from
the rotor at the closest distance. The quadrupole grid extends almost to the
observer. WOPWOP+ was unable to determine the retarded time satisfactorily
for this severe test case because the root finding algorithm exceeded the number
of iterations allowed. The WOPWOP2+ prediction slightly underpredicts the
Euler solution; nevertheless, the comparison is extremely good at this very
near-field location. In particular, the WOPWOP2+ prediction agrees perfectly
with the Euler data both before the negative peak and for the curved part of the
signal at the top of the shock-like structure after the negative peak. The far-field
and near-field quadrupole terms (terms with 1/r dependence and terms with 1/r2

and 1/r3 dependence, respectively) from equation (7) are also shown in Figure 11.

Figure 9. Effect of quadrupole grid extent shown for hovering UH-1H rotor, MH =0·95. (a)
Quadrupole grid (every 10th grid line in chordwise direction shown); (b) predicted acoustic pressure
for three quadrupole grid extents: –––, 0·05R beyond rotor tip (subsonic); –·–, 0·33R beyond rotor
tip; ——, 1·86R beyond rotor tip; q, experimental data [26].
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Figure 10. Comparison of WOPWOP+ (——), WOPWOP2+ (–––), and Euler [5, 24] (W)
predicted acoustic pressures for hovering model UH-1H rotor, MH =0·90. (a) 10° below rotor plane;
(b) 20° below rotor plane.

Figure 11. Near-field noise prediction at in-plane observer located 1·094R from rotor hub for
hovering model UH-1H rotor, MH =0·90 with quadrupole grid 0·0935R beyond rotor tip; –––,
far-field quadrupole component; –·–, near-field quadrupole components; ——, WOPWOP2+ total
acoustic pressure; W, Euler [5, 24] total acoustic pressure.

Clearly the near-field quadrupole terms—usually neglected by other researchers—
contribute significantly to the correct prediction of waveform shape at this close
distance. Figure 11 demonstrates the importance of keeping all of the terms so that
the acoustic prediction can be compared directly with CFD [16]. Both Figures 10
and 11 demonstrate the robustness of formulation Q2.

5. CONCLUDING REMARKS

A new quadrupole noise prediction method has been presented based on a new
analytic result, called formulation Q2, valid for both subsonic and supersonic
quadrupole sources. The new formulation is very simple and without any
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singularity. The procedure for implementation of the result is discussed in the
paper. This new code is called WOPWOP2+. It was demonstrated that
formulation Q2 is equivalent to formulation Q1A of Brentner used in
WOPWOP+ for subsonic quadrupole sources. By order of magnitude study of
the formulation Q2 far-field integrand, it was shown that the shock surfaces and
the stagnation flow at the leading edge of the blade are regions of high source
intensity. It was shown that for rotors operating at high tip Mach
numbers—before and after delocalization—the new formulation predicts acoustic
pressure signatures which agree well with the experimental data in both the shape
and the level of the main pulse of the signature. It has also been demonstrated
that the supersonic quadrupoles widen and modify the shape of the waveform. A
new and robust option is now available for prediction of HSI noise of helicopter
rotors based on formulation Q2.
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